747 Edltlon

: /ELAMSRl o NAVATHE

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

CHAPTER 18

Strategies for Query Processing

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Introduction

= DBMS techniques to process a query
= Scanner identifies query tokens
» Parser checks the query syntax
= Validation checks all attribute and relation names
= Query tree (or query graph) created
= Execution strategy or query plan devised
= Query optimization
= Planning a good execution strategy

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 18- 3

Query Processing

Query in a high-level language

Scanning, parsing, and validating

Immediate form of query

¢

Query optimizer

Execution plan

¢

Query code generator

'

Code to execute the query

#

Runtime database processor

:

Result of query

Code can be:

Executed directly (interpreted mode)

Stored and executed later whenever
needed (compiled mode)

Figure 18.1 Typical steps when processing a high-level query

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Slide 18-4

18.1 Translating SQL Queries Into
Relational Algebra and Other Operators

s SOL
= Query language used in most RDBMSs
s Query decomposed into query blocks

= Basic units that can be translated into the
algebraic operators

= Contains single SELECT-FROM-WHERE
expression

« May contain GROUP BY and HAVING clauses

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 18- 5

Translating SQL Queries (cont'd.)

s Example:

SELECT Lname, Fname

FROM EMPLOYEE

WHERE Salary > (SELECT MAX (Salary)
FROM EMPLOYEE
WHERE Dno=5);

= |Inner block

(SELECT MAX (Salary)
FROM EMPLOYEE
WHERE Dno=5)

= Outer block

SELECT Lname, Fname
FROM EMPLOYEE
WHERE Salary > ¢

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 18- 6

Translating SQL Queries (cont'd.)

» Example (cont'd.)

= Inner block translated into:
3IMAX Salary(ODno-5(EMPLOYEE))

= Outer block translated into:
RLname,Fname(GSalar}r}G(EMPLOYEE”

= Query optimizer chooses execution plan for each
guery block

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 18- 7

Additional Operators Semi-Join and
Anti-Join

= Semi-join
» Generally used for unnesting EXISTS, IN, and
ANY subqueries
s Syntax: TLXS=T2.Y
= T1is the left table and T2 is the right table of the
semi-join
= Arow of Tl is returned as soon as T1.X finds a

match with any value of T2.Y without searching for
further matches

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 18- 8

Additional Operators Semi-Join and
Anti-Join (cont'd.)

= Anti-join
= Used for unnesting NOT EXISTS, NOT IN, and
ALL subqueries

s Syntax: TLXA=T2y
= T1is the left table and T2 is the right table of the
anti-join
= Arow of Tl is rejected as soon as T1.x finds a
match with any value of T2.y

= Arow of T1 is returned only if T1.x does not match
with any value of T2.y

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 18- 9

18.2 Algorithms for External Sorting

= Sorting Is an often-used algorithm In query
processing

= External sorting

= Algorithms suitable for large files that do not fit
entirely in main memory

= Sort-merge strategy based on sorting smaller
subfiles (runs) and merging the sorted runs

= Requires buffer space in main memory
« DBMS cache

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 18- 10

set ie—1;

j & b; {size of the file in blocks)}
k + ng; {size of buffer in blocks}
m |_{ j.l’k]l-l; {number of subfiles- each fits in buffer}
{Sorting Phase}
while (1 =m)
do {
read next k blocks of the file into the buffer or if there are less than k blocks
remaining, then read in the remaining blocks;
sort the records in the buffer and write as a temporary subfile;
Pe—i+1;
}
{Merging Phase: merge subfiles until only 1 remains}
set e 1;
p — rlogk_inﬂ {p is the number of passes for the merging phase}
j & m;
while (i = p)
do {
n«—1;
q {jf[k—ﬂ-l i {number of subfiles to write in this pass]
while (n = g)
do {

read next k—1 subfiles or remaining subfiles (from previous pass)
one block at a time;
merge and write as new subfile one block at a time;
n—n+1;
}
& §
ie—i+1;

Figure 18.2 Outline of the sort-merge algorithm for external sorting

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe S' [de 18-11

Algorithms for External Sorting (cont’'d.)

= Degree of merging

= Number of sorted subfiles that can be merged in
each merge step

s Performance of the sort-merge algorithm

= Number of disk block reads and writes before
sorting is completed

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 18- 12

18.3 Algorithms for SELECT
Operation

s SELECT operation

= Search operation to locate records in a disk file
that satisfy a certain condition

= File scan or index scan (if search involves an
iIndex)

s Search methods for simple selection
= S1: Linear search (brute force algorithm)
= S2: Binary search
» S3a: Using a primary index
= S3b: Using a hash key

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 18- 13

Algorithms for SELECT Operation
(cont'd.)

s Search methods for simple selection (cont'd.)

= S4: Using a primary index to retrieve multiple
records

s S5: Using a clustering index to retrieve multiple
records

s S6: Using a secondary (B+ -tree) index on an
equality comparison

= S7a: Using a bitmap index

= S7b: Using a functional index

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 18- 14

Algorithms for SELECT Operation
(cont'd.)

s Search methods for conjunctive (logical AND)
selection

= Using an individual index
= Using a composite index
= Intersection of record pointers
= Disjunctive (logical OR) selection
= Harder to process and optimize

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 18- 15

Algorithms for SELECT Operation
(cont'd.)

s Selectivity

= Ratio of the number of records (tuples) that satisfy
the condition to the total number of records
(tuples) in the file

= Number between zero (no records satisfy
condition) and one (all records satisfy condition)

= Query optimizer receives input from system
catalog to estimate selectivity

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 18- 16

18.4 Implementing the JOIN
Operation

= JOIN operation

= One of the most time consuming in query
processing

= EQUIJOIN (NATURAL JOIN)
= Two-way or multiway joins
= Methods for implementing joins
= J1: Nested-loop join (nested-block join)
» J2: Index-based nested-loop join
= J3: Sort-merge join
= J4: Partition-hash join

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Slide 18- 17

Implementing the JOIN Operation

(cont'd.)

Figure 18.3 Implementing
JOIN, PROJECT, UNION,
INTERSECTION, and
SET DIFFERENCE by
using sort-merge, where R
has n tuples and S has m
tuples. (a) Implementing

the operation 7« R™ ,_gS,

(a) sort the tuples in R on attribute A; (*assume R has n tuples (records)®)
sort the tuples in S on attribute B; (*fassume S has m tuples (records)®)
setre1,j«1;
while (s <n) and (j < m)
do { if R(IA] = S(j)[B]

thenset j < j+ 1
elseif R{)[A] < S())[B]
then set 1 </ + 1
else { (* R()[A]l = S())[Bl, so we output a matched tuple *)
output the combined tuple <R(r), S(;)>to T;

(* output other tuples that match R(), if any *)

set /¢« j+ 1;

while (I < m) and (R(/)[A] = S(/)[B])

do { output the combined tuple <R(/), S(/)>to T;
set [« [+ 1

}

(* output other tuples that match S(j), if any *)

set k14 1;

while (k < n) and (R(k)[A] = S(y)[B])

do { output the combined tuple <R(k), S(;)>to T;
set k— k+ 1

}

set 1k j I

}

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 18-18

Implementing the JOIN Operation
(cont'd.)

(b) create a tuple f[<attribute list>] in T’ for each tuple tin R;
(* T’ contains the projection results before duplicate elimination *)
if <attribute list> includes a key of R
then T« T’
else { sortthe tuplesin T
seti¢= 1, 2;

while 1 < n
do { outputthe tuple T'[/] to T;
while T'l[l=T'[jlandj<ndoj<« j+ 1; (* eliminate duplicates *)

[j 1+ 1
)
}

(*T contains the projection result after duplicate elimination®)

Figure 18.3 (cont’d.) Implementing JOIN, PROJECT, UNION, INTERSECTION, and
SET DIFFERENCE by using sort-merge, where R has n tuples and S has m tuples.
(b) Implementing the operation 7T < Teatrinute ist>(R).

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 18-19

Implementing the JOIN Operation
(cont'd.)

(c) sort the tuples in R and S using the same unique sort attributes;
set1¢—=1,5¢ 1;
while (/ < n) and (j < m)
do { if R(i) > S())
then { output S(j)to T;
set j ¢+ 1
}
elseif R(r) < S(y)
then { output R(/)to T;
setré— 1+ 1
}
else set j <+ 1 (* R(1=S(y), so we skip one of the duplicate tuples *)

}
if (I < n) then add tuples R(/) to R(n) to T;
if (| < m) then add tuples S(j) to S(m) to T;

Figure 18.3 (cont'd.) Implementing JOIN, PROJECT, UNION, INTERSECTION, and
SET DIFFERENCE by using sort-merge, where R has n tuples and S has m tuples.
(c) Implementing the operation 7. R, S

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 18-20

Implementing the JOIN Operation
(cont'd.)

(d) sort the tuples in R and S using the same unique sort attributes;
seti< 1,/ 1;
while (1< n) and (j < m)
do { if R(1) > S(y)
then set j «— j + 1
elseif R(1) < S(y)
then set / <— 7+ 1
else { output R()) to T; (* R(1) = S(), so we output the tuple *)
seti¢<—7+1,j¢j+ 1

}

Figure 18.3 (cont’d.) Implementing JOIN, PROJECT, UNION, INTERSECTION, and
SET DIFFERENCE by using sort-merge, where R has n tuples and S has m tuples.
(d) Implementing the operation 7. R~ S

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 18-21

Implementing the JOIN Operation
(cont'd.)

(e) sort the tuples in R and S using the same unique sort attributes;
seti<—1,7j1;
while (< n) and (j < m)
do { if R(:) > S())
then set j < j + 1
elseif R(r) < S(y)
then { output R(i) to T; (* R(1) has no matching S(;), so output R(/) *)
set /¢ 7+ 1
}
elseseti¢<— i+ 1,/ + 1

}
if (I < n) then add tuples R(j) to R(n) to T;

Figure 18.3 (cont’d.) Implementing JOIN, PROJECT, UNION, INTERSECTION, and
SET DIFFERENCE by using sort-merge, where R has n tuples and S has m tuples.
(e) Implementing the operation T« R-S.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 18-22

Implementing the JOIN Operation
(cont'd.)

= Avallable buffer space has important effect on
some JOIN algorithms

= Nested-loop approach

= Read as many blocks as possible at a time into
memory from the file whose records are used for
the outer loop

= Advantageous to use the file with fewer blocks as
the outer-loop file

Slide 18- 23

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Implementing the JOIN Operation
(cont'd.)

s Join selection factor

= Fraction of records in one file that will be joined
with records in another file

= Depends on the particular equijoin condition with
another file

= Affects join performance

= Partition-hash join
= Each file is partitioned into M partitions using the
same partitioning hash function on the join
attributes

= Each pair of corresponding partitions is joined
Slide 18- 24

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Implementing the JOIN Operation
(cont'd.)

= Hybrid hash-join
= Variation of partition hash-join
= Joining phase for one of the partitions is included
In the partition

= Goal: join as many records during the partitioning
phase to save cost of storing records on disk and

then rereading during the joining phase

Slide 18- 25

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

18.5 Algorithms for PROJECT and
Set Operations

= PROJECT operation

= After projecting R on only the columns in the list of
attributes, any duplicates are removed by treating
the result strictly as a set of tuples

s Default for SQL queries

= No elimination of duplicates from the query result

« Duplicates eliminated only if the keyword DISTINCT
IS included

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 18- 26

Algorithms for PROJECT and Set
Operations (cont'd.)

= Set operations
= UNION
= INTERSECTION
= SET DIFFERENCE
= CARTESIAN PRODUCT

s Set operations sometimes expensive to
Implement

= Sort-merge technique
= Hashing

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 18- 27

Algorithms for PROJECT and Set
Operations (cont'd.)

s Use of anti-join for SET DIFFERENCE
s EXCEPT or MINUS in SQL

= Example: Find which departments have no
employees
Select Dnumber from DEPARTMENT MINUS Select Dno from EMPLOYEE;

becomes

SELECT DISTINCT DEPARTMENT.Dnumber
FROM DEPARTMENT, EMPLOYEE
WHERE DEPARTMENT.Dnumber A = EMPLOYEE.Dno

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 18- 28

18.6 Implementing Aggregate
Operations and Different Types of JOINS

= Aggregate operators
= MIN, MAX, COUNT, AVERAGE, SUM

= Can be computed by a table scan or using an
appropriate index

L Example: SELECT MAX(Salary)

FROM EMPLOYEE;

= If an (ascending) B+-tree index on Salary exists:

« Optimizer can use the Salary index to search for the
largest Salary value

« Follow the rightmost pointer in each index node
from the root to the rightmost leaf

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 18- 29

Implementing Aggregate Operations and
Different Types of JOINs (cont'd.)

= AVERAGE or SUM
= Index can be used if it Is a dense index
= Computation applied to the values in the index

= Nondense index can be used if actual number of
records associated with each index value Is stored
In each index entry
m COUNT

= Number of values can be computed from the index

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 18- 30

Implementing Aggregate Operations and
Different Types of JOINs (cont'd.)

s Standard JOIN (called INNER JOIN in SQL)

= Variations of joins

= Outer join
« Left, right, and full
« Example:

SELECT E.Lname, E.Fname, D.Dname
FROM (EMPLOYEE E LEFT OUTER JOIN DEPARTMENT D ON E.Dno = D.Dnumber);

= Semi-Join
= Anti-Join
= Non-Equi-Join

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 18- 31

18.7 Combining Operations Using
Pipelining

= SQL query translated into relational algebra
expression

= Sequence of relational operations
= Materialized evaluation
= Creating, storing, and passing temporary results

s General query goal: minimize the number of
temporary files

= Pipelining or stream-based processing
= Combines several operations into one
= Avoids writing temporary files

Slide 18- 32

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Combining Operations Using
Pipelining (cont'd.)

= Pipelined evaluation benefits

= Avoiding cost and time delay associated with
writing intermediate results to disk

= Being able to start generating results as quickly as
possible

m [terator

= Operation implemented in such a way that it
outputs one tuple at a time

= Many iterators may be active at one time

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 18- 33

Combining Operations Using
Pipelining (cont'd.)

m [terator interface methods
= Open()
s Get Next()
s Close()

= Some physical operators may not lend
themselves to the iterator interface concept

= Pipelining not supported

= |terator concept can also be applied to access
methods

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 18- 34

18.8 Parallel Algorithms for Query
Processing

= Parallel database architecture approaches

= Shared-memory architecture

= Multiple processors can access common main
memory region

= Shared-disk architecture
= Every processor has its own memory
= Machines have access to all disks
= Shared-nothing architecture
« Each processor has own memory and disk storage
« Most commonly used Iin parallel database systems

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 18- 35

Parallel Algorithms for Query
Processing (cont'd.)

= Linear speed-up
= Linear reduction in time taken for operations
= Linear scale-up

= Constant sustained performance by increasing the
number of processors and disks

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 18- 36

Parallel Algorithms for Query
Processing (cont'd.)

s Operator-level parallelism
= Horizontal partitioning
« Round-robin partitioning
» Range partitioning
« Hash partitioning
= Sorting
= If data has been range-partitioned on an attribute:
« Each partition can be sorted separately in parallel
« Results concatenated

= Reduces sorting time

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 18- 37

Parallel Algorithms for Query
Processing (cont'd.)

s Selection

= If condition Is an equality condition on an attribute
used for range partitioning:

« Perform selection only on partition to which the
value belongs

= Projection without duplicate elimination

= Perform operation in parallel as data is read
= Duplicate elimination

= Sort tuples and discard duplicates

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 18- 38

Parallel Algorithms for Query
Processing (cont'd.)

m Parallel joins divide the join into n smaller joins
= Perform smaller joins in parallel on n processors
= Take a union of the result

= Parallel join techniques
= Equality-based partitioned join
= Inequality join with partitioning and replication
= Parallel partitioned hash join

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 18- 39

Parallel Algorithms for Query
Processing (cont'd.)

= Aggregation

= Achieved by partitioning on the grouping attribute
and then computing the aggregate function locally
at each processor

s Set operations

= If argument relations are partitioned using the
same hash function, they can be done in parallel
on each processor

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 18- 40

Parallel Algorithms for Query
Processing (cont'd.)

= Intraquery parallelism

= Approaches

« Use parallel algorithm for each operation, with
appropriate partitioning of the data input to that
operation

=« Execute independent operations in parallel
= Interquery parallelism
= Execution of multiple queries in parallel
= Goal: scale up

= Difficult to achieve on shared-disk or shared-
nothing architectures

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Slide 18- 41

18.9 Summary

s SQL queries translated into relational algebra
= External sorting

= Selection algorithms

= Join operations

= Combining operations to create pipelined
execution

= Parallel database system architectures

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 18- 42

