
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

CHAPTER 18

Strategies for Query Processing

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Introduction

 DBMS techniques to process a query

 Scanner identifies query tokens

 Parser checks the query syntax

 Validation checks all attribute and relation names

 Query tree (or query graph) created

 Execution strategy or query plan devised

 Query optimization

 Planning a good execution strategy

Slide 18- 3

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Query Processing

Slide 18-4

Figure 18.1 Typical steps when processing a high-level query

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

18.1 Translating SQL Queries into

Relational Algebra and Other Operators

 SQL

 Query language used in most RDBMSs

 Query decomposed into query blocks

 Basic units that can be translated into the

algebraic operators

 Contains single SELECT-FROM-WHERE

expression

 May contain GROUP BY and HAVING clauses

Slide 18- 5

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Translating SQL Queries (cont’d.)

 Example:

 Inner block

 Outer block

Slide 18- 6

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Translating SQL Queries (cont’d.)

 Example (cont’d.)

 Inner block translated into:

 Outer block translated into:

 Query optimizer chooses execution plan for each

query block

Slide 18- 7

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Additional Operators Semi-Join and

Anti-Join

 Semi-join

 Generally used for unnesting EXISTS, IN, and

ANY subqueries

 Syntax: T1.X S = T2.Y

 T1 is the left table and T2 is the right table of the

semi-join

 A row of T1 is returned as soon as T1.X finds a

match with any value of T2.Y without searching for

further matches

Slide 18- 8

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Additional Operators Semi-Join and

Anti-Join (cont’d.)

 Anti-join

 Used for unnesting NOT EXISTS, NOT IN, and

ALL subqueries

 Syntax: T1.x A = T2.y

 T1 is the left table and T2 is the right table of the

anti-join

 A row of T1 is rejected as soon as T1.x finds a

match with any value of T2.y

 A row of T1 is returned only if T1.x does not match

with any value of T2.y

Slide 18- 9

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

18.2 Algorithms for External Sorting

 Sorting is an often-used algorithm in query

processing

 External sorting

 Algorithms suitable for large files that do not fit

entirely in main memory

 Sort-merge strategy based on sorting smaller

subfiles (runs) and merging the sorted runs

 Requires buffer space in main memory

 DBMS cache

Slide 18- 10

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 18-11

Figure 18.2 Outline of the sort-merge algorithm for external sorting

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Algorithms for External Sorting (cont’d.)

 Degree of merging

 Number of sorted subfiles that can be merged in

each merge step

 Performance of the sort-merge algorithm

 Number of disk block reads and writes before

sorting is completed

Slide 18- 12

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

18.3 Algorithms for SELECT

Operation

 SELECT operation

 Search operation to locate records in a disk file

that satisfy a certain condition

 File scan or index scan (if search involves an

index)

 Search methods for simple selection

 S1: Linear search (brute force algorithm)

 S2: Binary search

 S3a: Using a primary index

 S3b: Using a hash key

Slide 18- 13

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Algorithms for SELECT Operation

(cont’d.)

 Search methods for simple selection (cont’d.)

 S4: Using a primary index to retrieve multiple

records

 S5: Using a clustering index to retrieve multiple

records

 S6: Using a secondary (B+ -tree) index on an

equality comparison

 S7a: Using a bitmap index

 S7b: Using a functional index

Slide 18- 14

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Algorithms for SELECT Operation

(cont’d.)

 Search methods for conjunctive (logical AND)

selection

 Using an individual index

 Using a composite index

 Intersection of record pointers

 Disjunctive (logical OR) selection

 Harder to process and optimize

Slide 18- 15

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Algorithms for SELECT Operation

(cont’d.)

 Selectivity

 Ratio of the number of records (tuples) that satisfy

the condition to the total number of records

(tuples) in the file

 Number between zero (no records satisfy

condition) and one (all records satisfy condition)

 Query optimizer receives input from system

catalog to estimate selectivity

Slide 18- 16

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

18.4 Implementing the JOIN

Operation

 JOIN operation

 One of the most time consuming in query

processing

 EQUIJOIN (NATURAL JOIN)

 Two-way or multiway joins

 Methods for implementing joins

 J1: Nested-loop join (nested-block join)

 J2: Index-based nested-loop join

 J3: Sort-merge join

 J4: Partition-hash join

Slide 18- 17

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Implementing the JOIN Operation

(cont’d.)

Slide 18-18

Figure 18.3 Implementing

JOIN, PROJECT, UNION,

INTERSECTION, and

SET DIFFERENCE by

using sort-merge, where R

has n tuples and S has m

tuples. (a) Implementing

the operation

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Implementing the JOIN Operation

(cont’d.)

Slide 18-19

Figure 18.3 (cont’d.) Implementing JOIN, PROJECT, UNION, INTERSECTION, and

SET DIFFERENCE by using sort-merge, where R has n tuples and S has m tuples.

(b) Implementing the operation

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Implementing the JOIN Operation

(cont’d.)

Slide 18-20

Figure 18.3 (cont’d.) Implementing JOIN, PROJECT, UNION, INTERSECTION, and

SET DIFFERENCE by using sort-merge, where R has n tuples and S has m tuples.

(c) Implementing the operation

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Implementing the JOIN Operation

(cont’d.)

Slide 18-21

Figure 18.3 (cont’d.) Implementing JOIN, PROJECT, UNION, INTERSECTION, and

SET DIFFERENCE by using sort-merge, where R has n tuples and S has m tuples.

(d) Implementing the operation

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Implementing the JOIN Operation

(cont’d.)

Slide 18-22

Figure 18.3 (cont’d.) Implementing JOIN, PROJECT, UNION, INTERSECTION, and

SET DIFFERENCE by using sort-merge, where R has n tuples and S has m tuples.

(e) Implementing the operation

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Implementing the JOIN Operation

(cont’d.)

 Available buffer space has important effect on

some JOIN algorithms

 Nested-loop approach

 Read as many blocks as possible at a time into

memory from the file whose records are used for

the outer loop

 Advantageous to use the file with fewer blocks as

the outer-loop file

Slide 18- 23

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Implementing the JOIN Operation

(cont’d.)

 Join selection factor

 Fraction of records in one file that will be joined

with records in another file

 Depends on the particular equijoin condition with

another file

 Affects join performance

 Partition-hash join

 Each file is partitioned into M partitions using the

same partitioning hash function on the join

attributes

 Each pair of corresponding partitions is joined
Slide 18- 24

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Implementing the JOIN Operation

(cont’d.)

 Hybrid hash-join

 Variation of partition hash-join

 Joining phase for one of the partitions is included

in the partition

 Goal: join as many records during the partitioning

phase to save cost of storing records on disk and

then rereading during the joining phase

Slide 18- 25

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

18.5 Algorithms for PROJECT and

Set Operations

 PROJECT operation

 After projecting R on only the columns in the list of

attributes, any duplicates are removed by treating

the result strictly as a set of tuples

 Default for SQL queries

 No elimination of duplicates from the query result

 Duplicates eliminated only if the keyword DISTINCT

is included

Slide 18- 26

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Algorithms for PROJECT and Set

Operations (cont’d.)

 Set operations

 UNION

 INTERSECTION

 SET DIFFERENCE

 CARTESIAN PRODUCT

 Set operations sometimes expensive to

implement

 Sort-merge technique

 Hashing

Slide 18- 27

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Algorithms for PROJECT and Set

Operations (cont’d.)

 Use of anti-join for SET DIFFERENCE

 EXCEPT or MINUS in SQL

 Example: Find which departments have no

employees

becomes

Slide 18- 28

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

18.6 Implementing Aggregate

Operations and Different Types of JOINs

 Aggregate operators

 MIN, MAX, COUNT, AVERAGE, SUM

 Can be computed by a table scan or using an

appropriate index

 Example:

 If an (ascending) B+ -tree index on Salary exists:

 Optimizer can use the Salary index to search for the

largest Salary value

 Follow the rightmost pointer in each index node

from the root to the rightmost leaf
Slide 18- 29

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Implementing Aggregate Operations and

Different Types of JOINs (cont’d.)

 AVERAGE or SUM

 Index can be used if it is a dense index

 Computation applied to the values in the index

 Nondense index can be used if actual number of

records associated with each index value is stored

in each index entry

 COUNT

 Number of values can be computed from the index

Slide 18- 30

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Implementing Aggregate Operations and

Different Types of JOINs (cont’d.)

 Standard JOIN (called INNER JOIN in SQL)

 Variations of joins

 Outer join

 Left, right, and full

 Example:

 Semi-Join

 Anti-Join

 Non-Equi-Join

Slide 18- 31

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

18.7 Combining Operations Using

Pipelining

 SQL query translated into relational algebra

expression

 Sequence of relational operations

 Materialized evaluation

 Creating, storing, and passing temporary results

 General query goal: minimize the number of

temporary files

 Pipelining or stream-based processing

 Combines several operations into one

 Avoids writing temporary files

Slide 18- 32

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Combining Operations Using

Pipelining (cont’d.)

 Pipelined evaluation benefits

 Avoiding cost and time delay associated with

writing intermediate results to disk

 Being able to start generating results as quickly as

possible

 Iterator

 Operation implemented in such a way that it

outputs one tuple at a time

 Many iterators may be active at one time

Slide 18- 33

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Combining Operations Using

Pipelining (cont’d.)

 Iterator interface methods

 Open()

 Get_Next()

 Close()

 Some physical operators may not lend

themselves to the iterator interface concept

 Pipelining not supported

 Iterator concept can also be applied to access

methods

Slide 18- 34

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

18.8 Parallel Algorithms for Query

Processing

 Parallel database architecture approaches

 Shared-memory architecture

 Multiple processors can access common main

memory region

 Shared-disk architecture

 Every processor has its own memory

 Machines have access to all disks

 Shared-nothing architecture

 Each processor has own memory and disk storage

 Most commonly used in parallel database systems

Slide 18- 35

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Parallel Algorithms for Query

Processing (cont’d.)

 Linear speed-up

 Linear reduction in time taken for operations

 Linear scale-up

 Constant sustained performance by increasing the

number of processors and disks

Slide 18- 36

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Parallel Algorithms for Query

Processing (cont’d.)

 Operator-level parallelism

 Horizontal partitioning

 Round-robin partitioning

 Range partitioning

 Hash partitioning

 Sorting

 If data has been range-partitioned on an attribute:

 Each partition can be sorted separately in parallel

 Results concatenated

 Reduces sorting time

Slide 18- 37

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Parallel Algorithms for Query

Processing (cont’d.)

 Selection

 If condition is an equality condition on an attribute

used for range partitioning:

 Perform selection only on partition to which the

value belongs

 Projection without duplicate elimination

 Perform operation in parallel as data is read

 Duplicate elimination

 Sort tuples and discard duplicates

Slide 18- 38

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Parallel Algorithms for Query

Processing (cont’d.)

 Parallel joins divide the join into n smaller joins

 Perform smaller joins in parallel on n processors

 Take a union of the result

 Parallel join techniques

 Equality-based partitioned join

 Inequality join with partitioning and replication

 Parallel partitioned hash join

Slide 18- 39

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Parallel Algorithms for Query

Processing (cont’d.)

 Aggregation

 Achieved by partitioning on the grouping attribute

and then computing the aggregate function locally

at each processor

 Set operations

 If argument relations are partitioned using the

same hash function, they can be done in parallel

on each processor

Slide 18- 40

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Parallel Algorithms for Query

Processing (cont’d.)

 Intraquery parallelism

 Approaches

 Use parallel algorithm for each operation, with

appropriate partitioning of the data input to that

operation

 Execute independent operations in parallel

 Interquery parallelism

 Execution of multiple queries in parallel

 Goal: scale up

 Difficult to achieve on shared-disk or shared-

nothing architectures
Slide 18- 41

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

18.9 Summary

 SQL queries translated into relational algebra

 External sorting

 Selection algorithms

 Join operations

 Combining operations to create pipelined

execution

 Parallel database system architectures

Slide 18- 42

