
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

CHAPTER 18

Strategies for Query Processing

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Introduction

 DBMS techniques to process a query

 Scanner identifies query tokens

 Parser checks the query syntax

 Validation checks all attribute and relation names

 Query tree (or query graph) created

 Execution strategy or query plan devised

 Query optimization

 Planning a good execution strategy

Slide 18- 3

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Query Processing

Slide 18-4

Figure 18.1 Typical steps when processing a high-level query

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

18.1 Translating SQL Queries into

Relational Algebra and Other Operators

 SQL

 Query language used in most RDBMSs

 Query decomposed into query blocks

 Basic units that can be translated into the

algebraic operators

 Contains single SELECT-FROM-WHERE

expression

 May contain GROUP BY and HAVING clauses

Slide 18- 5

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Translating SQL Queries (cont’d.)

 Example:

 Inner block

 Outer block

Slide 18- 6

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Translating SQL Queries (cont’d.)

 Example (cont’d.)

 Inner block translated into:

 Outer block translated into:

 Query optimizer chooses execution plan for each

query block

Slide 18- 7

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Additional Operators Semi-Join and

Anti-Join

 Semi-join

 Generally used for unnesting EXISTS, IN, and

ANY subqueries

 Syntax: T1.X S = T2.Y

 T1 is the left table and T2 is the right table of the

semi-join

 A row of T1 is returned as soon as T1.X finds a

match with any value of T2.Y without searching for

further matches

Slide 18- 8

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Additional Operators Semi-Join and

Anti-Join (cont’d.)

 Anti-join

 Used for unnesting NOT EXISTS, NOT IN, and

ALL subqueries

 Syntax: T1.x A = T2.y

 T1 is the left table and T2 is the right table of the

anti-join

 A row of T1 is rejected as soon as T1.x finds a

match with any value of T2.y

 A row of T1 is returned only if T1.x does not match

with any value of T2.y

Slide 18- 9

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

18.2 Algorithms for External Sorting

 Sorting is an often-used algorithm in query

processing

 External sorting

 Algorithms suitable for large files that do not fit

entirely in main memory

 Sort-merge strategy based on sorting smaller

subfiles (runs) and merging the sorted runs

 Requires buffer space in main memory

 DBMS cache

Slide 18- 10

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 18-11

Figure 18.2 Outline of the sort-merge algorithm for external sorting

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Algorithms for External Sorting (cont’d.)

 Degree of merging

 Number of sorted subfiles that can be merged in

each merge step

 Performance of the sort-merge algorithm

 Number of disk block reads and writes before

sorting is completed

Slide 18- 12

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

18.3 Algorithms for SELECT

Operation

 SELECT operation

 Search operation to locate records in a disk file

that satisfy a certain condition

 File scan or index scan (if search involves an

index)

 Search methods for simple selection

 S1: Linear search (brute force algorithm)

 S2: Binary search

 S3a: Using a primary index

 S3b: Using a hash key

Slide 18- 13

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Algorithms for SELECT Operation

(cont’d.)

 Search methods for simple selection (cont’d.)

 S4: Using a primary index to retrieve multiple

records

 S5: Using a clustering index to retrieve multiple

records

 S6: Using a secondary (B+ -tree) index on an

equality comparison

 S7a: Using a bitmap index

 S7b: Using a functional index

Slide 18- 14

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Algorithms for SELECT Operation

(cont’d.)

 Search methods for conjunctive (logical AND)

selection

 Using an individual index

 Using a composite index

 Intersection of record pointers

 Disjunctive (logical OR) selection

 Harder to process and optimize

Slide 18- 15

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Algorithms for SELECT Operation

(cont’d.)

 Selectivity

 Ratio of the number of records (tuples) that satisfy

the condition to the total number of records

(tuples) in the file

 Number between zero (no records satisfy

condition) and one (all records satisfy condition)

 Query optimizer receives input from system

catalog to estimate selectivity

Slide 18- 16

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

18.4 Implementing the JOIN

Operation

 JOIN operation

 One of the most time consuming in query

processing

 EQUIJOIN (NATURAL JOIN)

 Two-way or multiway joins

 Methods for implementing joins

 J1: Nested-loop join (nested-block join)

 J2: Index-based nested-loop join

 J3: Sort-merge join

 J4: Partition-hash join

Slide 18- 17

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Implementing the JOIN Operation

(cont’d.)

Slide 18-18

Figure 18.3 Implementing

JOIN, PROJECT, UNION,

INTERSECTION, and

SET DIFFERENCE by

using sort-merge, where R

has n tuples and S has m

tuples. (a) Implementing

the operation

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Implementing the JOIN Operation

(cont’d.)

Slide 18-19

Figure 18.3 (cont’d.) Implementing JOIN, PROJECT, UNION, INTERSECTION, and

SET DIFFERENCE by using sort-merge, where R has n tuples and S has m tuples.

(b) Implementing the operation

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Implementing the JOIN Operation

(cont’d.)

Slide 18-20

Figure 18.3 (cont’d.) Implementing JOIN, PROJECT, UNION, INTERSECTION, and

SET DIFFERENCE by using sort-merge, where R has n tuples and S has m tuples.

(c) Implementing the operation

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Implementing the JOIN Operation

(cont’d.)

Slide 18-21

Figure 18.3 (cont’d.) Implementing JOIN, PROJECT, UNION, INTERSECTION, and

SET DIFFERENCE by using sort-merge, where R has n tuples and S has m tuples.

(d) Implementing the operation

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Implementing the JOIN Operation

(cont’d.)

Slide 18-22

Figure 18.3 (cont’d.) Implementing JOIN, PROJECT, UNION, INTERSECTION, and

SET DIFFERENCE by using sort-merge, where R has n tuples and S has m tuples.

(e) Implementing the operation

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Implementing the JOIN Operation

(cont’d.)

 Available buffer space has important effect on

some JOIN algorithms

 Nested-loop approach

 Read as many blocks as possible at a time into

memory from the file whose records are used for

the outer loop

 Advantageous to use the file with fewer blocks as

the outer-loop file

Slide 18- 23

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Implementing the JOIN Operation

(cont’d.)

 Join selection factor

 Fraction of records in one file that will be joined

with records in another file

 Depends on the particular equijoin condition with

another file

 Affects join performance

 Partition-hash join

 Each file is partitioned into M partitions using the

same partitioning hash function on the join

attributes

 Each pair of corresponding partitions is joined
Slide 18- 24

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Implementing the JOIN Operation

(cont’d.)

 Hybrid hash-join

 Variation of partition hash-join

 Joining phase for one of the partitions is included

in the partition

 Goal: join as many records during the partitioning

phase to save cost of storing records on disk and

then rereading during the joining phase

Slide 18- 25

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

18.5 Algorithms for PROJECT and

Set Operations

 PROJECT operation

 After projecting R on only the columns in the list of

attributes, any duplicates are removed by treating

the result strictly as a set of tuples

 Default for SQL queries

 No elimination of duplicates from the query result

 Duplicates eliminated only if the keyword DISTINCT

is included

Slide 18- 26

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Algorithms for PROJECT and Set

Operations (cont’d.)

 Set operations

 UNION

 INTERSECTION

 SET DIFFERENCE

 CARTESIAN PRODUCT

 Set operations sometimes expensive to

implement

 Sort-merge technique

 Hashing

Slide 18- 27

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Algorithms for PROJECT and Set

Operations (cont’d.)

 Use of anti-join for SET DIFFERENCE

 EXCEPT or MINUS in SQL

 Example: Find which departments have no

employees

becomes

Slide 18- 28

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

18.6 Implementing Aggregate

Operations and Different Types of JOINs

 Aggregate operators

 MIN, MAX, COUNT, AVERAGE, SUM

 Can be computed by a table scan or using an

appropriate index

 Example:

 If an (ascending) B+ -tree index on Salary exists:

 Optimizer can use the Salary index to search for the

largest Salary value

 Follow the rightmost pointer in each index node

from the root to the rightmost leaf
Slide 18- 29

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Implementing Aggregate Operations and

Different Types of JOINs (cont’d.)

 AVERAGE or SUM

 Index can be used if it is a dense index

 Computation applied to the values in the index

 Nondense index can be used if actual number of

records associated with each index value is stored

in each index entry

 COUNT

 Number of values can be computed from the index

Slide 18- 30

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Implementing Aggregate Operations and

Different Types of JOINs (cont’d.)

 Standard JOIN (called INNER JOIN in SQL)

 Variations of joins

 Outer join

 Left, right, and full

 Example:

 Semi-Join

 Anti-Join

 Non-Equi-Join

Slide 18- 31

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

18.7 Combining Operations Using

Pipelining

 SQL query translated into relational algebra

expression

 Sequence of relational operations

 Materialized evaluation

 Creating, storing, and passing temporary results

 General query goal: minimize the number of

temporary files

 Pipelining or stream-based processing

 Combines several operations into one

 Avoids writing temporary files

Slide 18- 32

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Combining Operations Using

Pipelining (cont’d.)

 Pipelined evaluation benefits

 Avoiding cost and time delay associated with

writing intermediate results to disk

 Being able to start generating results as quickly as

possible

 Iterator

 Operation implemented in such a way that it

outputs one tuple at a time

 Many iterators may be active at one time

Slide 18- 33

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Combining Operations Using

Pipelining (cont’d.)

 Iterator interface methods

 Open()

 Get_Next()

 Close()

 Some physical operators may not lend

themselves to the iterator interface concept

 Pipelining not supported

 Iterator concept can also be applied to access

methods

Slide 18- 34

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

18.8 Parallel Algorithms for Query

Processing

 Parallel database architecture approaches

 Shared-memory architecture

 Multiple processors can access common main

memory region

 Shared-disk architecture

 Every processor has its own memory

 Machines have access to all disks

 Shared-nothing architecture

 Each processor has own memory and disk storage

 Most commonly used in parallel database systems

Slide 18- 35

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Parallel Algorithms for Query

Processing (cont’d.)

 Linear speed-up

 Linear reduction in time taken for operations

 Linear scale-up

 Constant sustained performance by increasing the

number of processors and disks

Slide 18- 36

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Parallel Algorithms for Query

Processing (cont’d.)

 Operator-level parallelism

 Horizontal partitioning

 Round-robin partitioning

 Range partitioning

 Hash partitioning

 Sorting

 If data has been range-partitioned on an attribute:

 Each partition can be sorted separately in parallel

 Results concatenated

 Reduces sorting time

Slide 18- 37

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Parallel Algorithms for Query

Processing (cont’d.)

 Selection

 If condition is an equality condition on an attribute

used for range partitioning:

 Perform selection only on partition to which the

value belongs

 Projection without duplicate elimination

 Perform operation in parallel as data is read

 Duplicate elimination

 Sort tuples and discard duplicates

Slide 18- 38

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Parallel Algorithms for Query

Processing (cont’d.)

 Parallel joins divide the join into n smaller joins

 Perform smaller joins in parallel on n processors

 Take a union of the result

 Parallel join techniques

 Equality-based partitioned join

 Inequality join with partitioning and replication

 Parallel partitioned hash join

Slide 18- 39

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Parallel Algorithms for Query

Processing (cont’d.)

 Aggregation

 Achieved by partitioning on the grouping attribute

and then computing the aggregate function locally

at each processor

 Set operations

 If argument relations are partitioned using the

same hash function, they can be done in parallel

on each processor

Slide 18- 40

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Parallel Algorithms for Query

Processing (cont’d.)

 Intraquery parallelism

 Approaches

 Use parallel algorithm for each operation, with

appropriate partitioning of the data input to that

operation

 Execute independent operations in parallel

 Interquery parallelism

 Execution of multiple queries in parallel

 Goal: scale up

 Difficult to achieve on shared-disk or shared-

nothing architectures
Slide 18- 41

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

18.9 Summary

 SQL queries translated into relational algebra

 External sorting

 Selection algorithms

 Join operations

 Combining operations to create pipelined

execution

 Parallel database system architectures

Slide 18- 42

